Reactions between $M_{n}\left(M=N b, M o\right.$ and $n=1,2,3$, and 4) and N_{2}. A Density Functional Study

Attila Bérces,* Steven A. Mitchell, and Marek Z. Zgierski
Steacie Institute for Molecular Sciences, National Research Council, 100 Sussex Drive, Ottawa K1A 0R6, Canada

Received: March 11, 1998

Abstract

Gradient-corrected density functional calculations were used to determine the most stable geometrical conformations and lowest electronic states of molybdenum and niobium atoms, dimers, trimers, and tetramers and their adducts with dinitrogen. The binding energies, geometries, and vibrational frequencies of the most stable conformations and electronic states are compared to experimental and theoretical results to the extent they are available. To interpret some of the peculiar features of related experimental data, we studied the ionization potential and electronic properties of MoN and NbN and the binding of more than one nitrogen molecule to metal trimers.

Introduction

The biological and chemical activation of dinitrogen has fascinated chemists for decades. A renewed interest in this subject has been fueled by the characterization of the active site of nitrogenase enzyme, ${ }^{1}$ the natural catalyst of $\mathrm{N}-\mathrm{N}$ bond activation, and consequent discoveries of inorganic complexes that break the $\mathrm{N}-\mathrm{N}$ bond and reduce dinitrogen. ${ }^{2}$ Researchers of our institute studied another aspect of nitrogen fixation, the reaction of N_{2} with small metal clusters, to understand the fundamental driving forces of the cleavage of the $\mathrm{N}-\mathrm{N}$ bond and to evaluate the similarities and differences between surface and cluster reactivities. Some experimental measurements of second-order rate coefficients of $\mathrm{M}_{x}+\mathrm{N}_{2}$ reactions have been done in our laboratory, which show a non-monotone trend of reactivity as a function of cluster size in the small ($1-50$ atoms) cluster size regime. ${ }^{3}$

To complement the experimental studies, we use quantum chemical calculations to gain an insight into the molecular orbital and steric interactions that govern reactivity. Methods based on density functional theory (DFT) in particular have been valuable tools to study a wide range of chemical systems including transition metal clusters. Thus, we carried out gradient-corrected DFT calculations to study various aspects of the $\mathrm{M}_{n}+\mathrm{N}_{2}$ reactions. In the present paper we report the structures of $\mathrm{Nb}_{n} \mathrm{~N}_{2}$ and $\mathrm{Mo}_{n} \mathrm{~N}_{2}$ clusters up to four metal atoms. Besides the main reaction products, we studied possible byproducts in order to interpret some of the peculiar features of the experimental data. The structures of $\mathrm{M}_{2} \mathrm{~N}_{2}$ systems are discussed in a greater detail owing to their relevance to the ligandsupported binuclear, and larger, clusters.

Computational Details

The reported calculations employed the Amsterdam density functional (ADF 2.0.1) program system are derived from the work of Baerends et al. ${ }^{4 \mathrm{a}}$ and vectorized by Ravenek. ${ }^{4 \mathrm{~b}}$ The numerical integration procedure was developed by teVelde ${ }^{5}$ et al. The atomic orbitals on the metal atoms were described by an uncontracted triple- ζ STO basis set with a single polarization function, while a double- ζ single-polarized STO basis set was
used for nitrogens. ${ }^{6}$ A set of auxiliary ${ }^{7}$ s, p, d, f, and g STO functions, centered on all nuclei, was used to fit the molecular density and represent the Coulomb and exchange potentials in each SCF cycle. We used the energy expression from the local density approximation ${ }^{8 \mathrm{a}}$ in the Vosko-Wilk-Nusair parametrization augmented by gradient corrections to exchange ${ }^{8 b}$ of Becke and to correlation of Perdew, ${ }^{8 c}$ which was applied selfconsistently.

Results and Discussion

Reactions of Metal Atoms with $\mathbf{N}_{\mathbf{2}}$. Tables 1 and 2 summarize the binding energies, geometries, and vibrational frequencies of the MoN_{2} and NbN_{2}, respectively. We found linear end-on and planar side-on geometrical conformations as stable minima. The side-on bonded conformer of MoN_{2} has the lowest energy in the ${ }^{5} \mathrm{~B}_{2}$ state, which is bound only by 0.1 eV relative to the separated ground state $\left({ }^{7} \mathrm{~S}\right) \mathrm{Mo}$ atom and N_{2}. Thus, MoN_{2} is only weakly bound and formed in a spin-forbidden reaction in accord with the experimental observation that Mo atom does not react with $\mathrm{N}_{2} .{ }^{9}$ On the other hand, the experimentally observed reactivity ${ }^{10}$ of Nb with N_{2} is reflected in the calculated potential that is barrierless and attractive on the ${ }^{6} \Sigma^{+}$surface with collinear geometry (Figure 1). The side-on NbN_{2} is less stable than the linear structure, but it is still bound compared to the separate fragments.
Martinez and co-workers studied MoN_{2} by gradient-corrected density functional methods in detail. ${ }^{11}$ Their results on the stable structures and relative energies are in good qualitative agreement with ours. One notable difference is the relative energies of the lowest side-on and end-on bonded conformations. We found that the ${ }^{5} \mathrm{~B}_{1}$ state of side-on conformation is more strongly bound $(\Delta E=-0.09 \mathrm{eV})$ than the ${ }^{5} \Pi$ state of the linear end-on conformation $(\Delta E=-0.03 \mathrm{eV})$. On the other hand, Martinez et al. obtained the reverse relative stability of similarly weakly bound isomers ($\Delta E=-0.07$ and -0.15 eV , respectively). In addition to the structures described by Martinez et al., we found a transition state on the ${ }^{7} \Pi$ surface that correlates to the ground state of Mo atom. The imaginary vibrational frequency corresponds to the degenerate bending coordinate, but we were unable to locate the bent structure since the potential energy surface is

TABLE 1: Binding Energies, Bond Lengths, and Vibrational Frequencies of $\mathbf{M o N}_{2}$ Conformers ${ }^{a}$

state	${ }^{3} \Pi$	${ }^{5} \Pi$	${ }^{7} \Pi$	${ }^{1} \mathrm{~A}_{1}$	${ }^{3} \mathrm{~B}_{1}$	${ }^{5} \mathrm{~B}_{1}$
config.	end-on	end-on	end-on	side-on	side-on	side-on
bind. energy ${ }^{b}$	0.762	-0.032	0.005	0.308	0.477	-0.094
$R_{1}(\mathrm{~N}-\mathrm{N})$	1.150	1.145	1.104	2.702	2.627	1.192
$R_{2}(\mathrm{Nb}-\mathrm{N})$	1.912	1.944	3.973	1.707	1.733	2.098
v_{1}	310	280	180	451	333	457
v_{1}	486	463	48	914	716	474
v_{3}	1891	1984	2371	1013	968	1724
z.p.e.	0.186	0.186	0.150	0.147	0.125	0.165

${ }^{a}$ Energies in eV distances in \AA, and vibrational frequencies in cm^{-1}. ${ }^{b}$ Binding energy relative to the sum of the energies of the isolated ground state $\left({ }^{7} \mathrm{~S}\right)$ Mo atom and N_{2} fragments.

TABLE 2: Binding Energies, Bond Lengths, and Vibrational Frequencies of $\mathbf{N b N}_{\mathbf{2}}$ Conformers ${ }^{a}$

state	${ }^{2} \Sigma^{+}$	${ }^{4}(\Pi, \Phi)$	${ }^{6} \Sigma^{+}$	${ }^{2} \mathrm{~A}_{1}$	${ }^{4} \mathrm{~B}_{1}$	${ }^{4} \mathrm{~A}_{2}$
config.	end-on	end-on	end-on	side-on	side-on	side-on
bind. energy ${ }^{b}$	0.497	-0.394	-1.439	-0.882	-0.803	-0.812
$R_{1}(\mathrm{~N}-\mathrm{N})$	1.149	1.150	1.138	1.422	1.214	1.234
$R_{2}(\mathrm{Nb}-\mathrm{N})$	1.948	1.979	2.043	1.849	2.087	2.035
ν_{1}		306	287	431		
ν_{1}		405	406	708		
ν_{3}		1974	1974	1021		
z.p.e.		0.183	0.183	0.134		

${ }^{a}$ Energies in eV distances in \AA, and vibrational frequencies in cm^{-1}. ${ }^{b}$ Binding energy relative to the sum of the energies of the isolated ground state $\left({ }^{6} \mathrm{D}\right) \mathrm{Nb}$ atom and N_{2} fragments.

Figure 1. Energy diagram of $\mathrm{Nb}+\mathrm{N}_{2}$ reaction.
extremely flat. This structure has a very long $\mathrm{Mo}-\mathrm{N}$ distance, and the energy is close to that of the separated fragments.

The variety of stable structures of N_{2} adducts with transition metal atoms and clusters often arize from the stepwise breaking of the $\mathrm{N}-\mathrm{N}$ bond. The side-on structures are suitable for the efficient charge transfer into the π^{*} and σ^{*} bonds of N_{2} and manifest two distinct sets of geometries with partially broken (1.2-1.4 Å long) and fully broken ($2.7 \AA$ long) $\mathrm{N}-\mathrm{N}$ bonds. The linear, end-on bonded structures do not provide efficient charge transfer into the antibonding orbitals of N_{2} to significantly elongate or break the $\mathrm{N}-\mathrm{N}$ bond. The reason why the linear structure can still be energetically very favorable is that metalnitrogen bond can form without the cost of breaking or weakening the $\mathrm{N}-\mathrm{N}$ bond.

The bond analysis developed by Ziegler and Rauk ${ }^{12}$ provides further insight into the differences between the energetics of Nb and Mo interactions with N_{2}. Although this procedure is quite mathematical, the aim is to explain bonding in three simple terms: orbital interaction $\left(\Delta E_{\text {el }}\right)$, steric interaction $\left(\Delta E^{0}\right)$, and preparation ($\Delta E_{\text {prep }}$) energies as shown in eq 1:

$$
\begin{equation*}
\Delta E_{\mathrm{binding}}=\Delta E_{\mathrm{el}}+\Delta E^{0}+\Delta E_{\mathrm{prep}} \tag{1}
\end{equation*}
$$

The total binding energy ($\Delta E_{\text {binding }}$) in our calculations represents the reaction energy of dinitrogen with a single atom. The term $\Delta E_{\text {el }}$ represents the main features of the common theory by Parr and Pearson in which the binding energy is related to the differences in electronegativity and hardness between interacting fragments. ${ }^{13}$ The preparation energy, in this case, represents the stretching energy of the $\mathrm{N}-\mathrm{N}$ bond to the appropriate distance in the MN_{2} molecule from the equilibrium geometry of N_{2}.

The ${ }^{5} \Pi$ state of MoN_{2} and the ${ }^{6} \Sigma^{+}$state of NbN_{2} in linear configuration are particularly appropriate for the comparison of the binding energy terms since the steric repulsion (4.2 eV) and the preparation energy $(0.1 \mathrm{eV})$ are essentially the same in these two systems. Thus, the difference in the binding energies arises from the difference in the orbital interaction terms. The extra electron on the d shell of Mo atom yields a 1.2 eV more repulsive interaction between the filled σ orbital of N_{2} and the $\mathrm{d}_{z^{2}}$ of Mo , compared to Nb . The combined interaction between the π and δ orbitals is the same for MoN_{2} and NbN_{2}. Accordingly, the reduced σ repulsion is the main source of stronger binding in linear NbN_{2}. The 0.4 charge transferred into the N_{2} fragment in MoN_{2} is equally divided between the nitrogens, while the 0.3 charge transferred to N_{2} in NbN_{2} is more polarized and yields a 0.4 spin surplus on the distant N atom.

For the side-on isomers, we compared energy terms between analogous isomers with partially and fully broken $\mathrm{N}-\mathrm{N}$ bonds. For these systems, it is more difficult to pinpoint a single energy term that is responsible for the stronger binding in NbN_{2}. The only consistent difference between MoN_{2} and NbN_{2} is the lowered repulsion between the σ of N_{2} and the $\mathrm{d}_{z^{2}}$ of the metal in NbN_{2} compared to MoN_{2}. However, the σ interaction is small in this conformation, and the rest of the contributions are inconsistent between MoN_{2} and NbN_{2}. The combined σ^{*} and π^{*} interactions (both are b_{1} symmetry in $C_{2 v}$), for example, are 5.0 eV stronger in the ${ }^{1} \mathrm{~A}_{1}$ state of MoN_{2} than in the ${ }^{2} \mathrm{~B}_{1}$ state of NbN_{2} while, in the weakly bound analogues, the same interaction terms are in favor of the ${ }^{4} \mathrm{~A}_{2}$ state of NbN_{2} by 3.4 eV relative to the ${ }^{5} \mathrm{~B}_{1}$ state of MoN_{2}.

Reactions of Metal Dimers with $\mathbf{N}_{\mathbf{2}}$. Metal dimers and larger clusters can yield adducts with N_{2} in a large variety of geometrical conformations (Figure 2), and each conformation may exist in various spin states. $\mathrm{M}_{2} \mathrm{~N}_{2}$ may also exist in unsymmetrical geometries or in T-shaped end-on bonded conformations, not shown in Figure 2. On the basis of our calculations, the most important conformations are the perpendicular and parallel bridging and the trans conformations. The linear $\mathrm{M}-\mathrm{N}-\mathrm{N}-\mathrm{M}$ conformations can be found in ligandsupported inorganic complexes. ${ }^{14}$ Blomberg et al. ${ }^{15}$ studied the linear $\mathrm{M}-\mathrm{N}-\mathrm{N}-\mathrm{M}$ and perpendicular bridging conformations of $\mathrm{M}_{2} \mathrm{~N}_{2}$ systems with $\mathrm{M}=\mathrm{Ti}, \mathrm{Y}$, and Zr . Although some of the characteristics of the ligand-supported clusters can be reproduced with the naked $\mathrm{M}_{2} \mathrm{~N}_{2}$ systems, energetic preferences are highly altered by the coordinating ligands. We found that the linear $\mathrm{M}-\mathrm{N}-\mathrm{N}-\mathrm{M}$ configuration is a high-energy and unlikely structure for the naked metal clusters in spite of its significance in inorganic chemistry. Energies, geometries, and vibrational frequencies of the most significant states and conformations of $\mathrm{Mo}_{2} \mathrm{~N}_{2}$ and $\mathrm{Nb}_{2} \mathrm{~N}_{2}$, based on our calculations, are listed in Tables 3 and 4, respectively.

The $C_{2 v}$ symmetry nonplanar perpendicular bridging conformation in the ${ }^{5} \mathrm{~A}_{2}$ state is the ground state of $\mathrm{Mo}_{2} \mathrm{~N}_{2}$ (structure 2). The second lowest energy is the planar trans $C_{2 h}$ conformation in the ${ }^{1} \mathrm{~A}_{\mathrm{g}}$ state (structure 4.a). The planar perpendicular

Figure 2. The structures of $\mathrm{M}_{2} \mathrm{~N}_{2}$ conformers.
TABLE 3: Binding Energies, Geometries, and Vibrational Frequencies of $\mathrm{Mo}_{2} \mathbf{N}_{2}$ Conformers ${ }^{a}$

	perp. bridge					para. bridge		trans	
	$D_{2 h}{ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$	$D_{2 h}{ }^{3} \mathrm{~B}_{1 \mathrm{u}}$	$D_{2 h}{ }^{5} \mathrm{~B}_{1 \mathrm{~g}}$	$C_{2 v}{ }^{5} \mathrm{~A}_{2}$	$C_{2 v}{ }^{7} \mathrm{~B}_{2}$	$C_{2 v}{ }^{1} \mathrm{~A}_{1}$	$C_{2 v}{ }^{3} \mathrm{~B}_{1}$	$C_{2 h}{ }^{1} \mathrm{~A}_{\mathrm{g}}$	$C_{2 h}{ }^{3} \mathrm{~B}_{\mathrm{u}}$
$e^{\text {energy }}{ }^{b}$	-28.423	-28.822	-28.415	-29.033	-28.917	-28.410	27.966	-29.008	-28.686
bind. energy ${ }^{c}$	0.306	-. 093	0.314	-. 304	$-.188$	0.320	0.763	-0.277	0.042
$R_{1}(\mathrm{Mo}-\mathrm{Mo})$	2.742	2.736	2.575	2.522	2.774	2.326	2.476	2.256	2.314
$R_{2}(\mathrm{Mo}-\mathrm{N})$	1.848	1.851	1.897	1.890	1.896	1.665	1.665	1.694	1.692
α						104.7	102.6	89.9	85.6
d				0.468	0.168				
ν_{1}	$348 \mathrm{~A}_{1 \mathrm{~g}}$	$352 \mathrm{~A}_{1 \mathrm{~g}}$	$11252 \mathrm{~A}_{1 \mathrm{~g}}$	$266 \mathrm{~A}_{1}$	$205 \mathrm{~A}_{1}$	$139 \mathrm{~A}_{2}$	$96 \mathrm{~A}_{2}$	$143 \mathrm{~B}_{\mathrm{u}}$	$115 \mathrm{~B}_{\mathrm{u}}$
ν_{2}	$369 \mathrm{~B}_{1 \mathrm{u}}$	$154 \mathrm{~B}_{\mathrm{lu}}$	1272 B ${ }_{3 \mathrm{u}}$	$379 \mathrm{~B}_{1}$	$322 \mathrm{~A}_{1}$	$232 \mathrm{~A}_{1}$	$154 \mathrm{~B}_{2}$	$214 \mathrm{~A}_{\mathrm{u}}$	$124 \mathrm{~A}_{\mathrm{u}}$
ν_{3}	$486 \mathrm{~B}_{1 \mathrm{~g}}$	$406 \mathrm{~B}_{1 \mathrm{~g}}$	$33 \mathrm{~B}_{1 \mathrm{u}}$	$383 \mathrm{~A}_{1}$	$414 \mathrm{~B}_{1}$	$239 \mathrm{~B}_{2}$	$207 \mathrm{~A}_{1}$	218 Ag	157 Ag
ν_{4}	$669 \mathrm{~B}_{3 \mathrm{u}}$	$596 \mathrm{~B}_{3 \mathrm{u}}$	$354 \mathrm{~B}_{1 \mathrm{~g}}$	$396 \mathrm{~A}_{2}$	$450 \mathrm{~A}_{2}$	$319 \mathrm{~A}_{1}$	$244 \mathrm{~A}_{1}$	426 Ag	398 Ag
ν_{5}	$731 \mathrm{~B}_{2 \mathrm{u}}$	$719 \mathrm{~B}_{2 \mathrm{u}}$	$441 \mathrm{~A}_{1 \mathrm{~g}}$	$741 \mathrm{~B}_{2}$	$657 \mathrm{~B}_{2}$	$1044 \mathrm{~A}_{1}$	$1043 \mathrm{~B}_{2}$	$994 \mathrm{~A}_{\mathrm{g}}$	$985 \mathrm{~A}_{\mathrm{g}}$
v_{6}	$869 \mathrm{~A}_{1 \mathrm{~g}}$	$861 \mathrm{~A}_{1 \mathrm{~g}}$	$714 \mathrm{~B}_{2 \mathrm{u}}$	$781 \mathrm{~A}_{1}$	$773 \mathrm{~A}_{1}$	$1057 \mathrm{~B}_{2}$	$1053 \mathrm{~A}_{1}$	$1021 \mathrm{Bu}_{\text {u }}$	$1021 \mathrm{~B}_{\mathrm{u}}$
z.p.e.	0.215	0.191	0.096	0.183	0.175	0.188	0.173	0.187	0.174

${ }^{a}$ Energies in eV , distances in A, angles in deg, and vibrational frequencies in $\mathrm{cm}^{-1} .{ }^{b}$ Energy relative to sum of the energies of atoms with spherical charge densities. ${ }^{c}$ Energy relative to sum of the ground state of Mo_{2} and N_{2} fragment energies without zero-point corrections. ${ }^{d}$ Symmetry fables refer to an orientation in which the metal atoms are aligned with the x -axis and the N atoms accordingly in the $C_{2 v}$ and $D_{2 h}$ point groups.

TABLE 4: Binding Energies, Geometries, and Vibrational Frequencies of $\mathbf{N b}_{2} \mathbf{N}_{2}$ Conformers ${ }^{a}$

	perp. bridge					para. bridge		trans	
	$D_{2 h}{ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$	$D_{2 h}{ }^{3} \mathrm{~B}_{3 \mathrm{~g}}$	$D_{2 h}{ }^{5} \mathrm{~B}_{1 \mathrm{~g}}$	$C_{2 v}{ }^{1} \mathrm{~A}_{1}$	$C_{2 v}{ }^{3} \mathrm{~B}_{2}$	$C_{2 v}{ }^{1} \mathrm{~A}_{1}$	$C_{2 v}{ }^{3} \mathrm{~B}_{2}$	$C_{2 h}{ }^{1} \mathrm{~A}_{\mathrm{g}}$	$C_{2 h}{ }^{3} \mathrm{~A}_{\mathrm{g}}$
$\text { energy }^{b}$	-29.077	-29.617	-29.888	-29.630	-29.642	-27.055	-27.181	-28.426	-28.163
bind. energy ${ }^{c}$	-2.165	-2.705	-2.976	-2.718	-2.730	$-.143$	-0.270	-1.514	-1.251
$R_{1}(\mathrm{Nb}-\mathrm{Nb})$	2.725	2.737	2.815	2.275	2.718	2.632	2.699	2.250	2.355
$R_{2}(\mathrm{Nb}-\mathrm{N})$	1.885	1.889	1.909	1.965	1.893	1.695	1.699	1.745	1.754
α						102.3	104.7	76.2	73.2
d				0.6484	0.170				
ν_{1}	technical	i200 B ${ }_{\text {lu }}$	$259 \mathrm{~B}_{1 \mathrm{u}}$	$245 \mathrm{~A}_{2}$	$182 \mathrm{~A}_{1}$	$148 \mathrm{~A}_{2}$	i121 A	i117 A_{u}	i186 A ${ }_{\text {u }}$
ν_{2}	problem	$355 \mathrm{~A}_{1 \mathrm{~g}}$	$348 \mathrm{~A}_{1 \mathrm{~g}}$	$372 \mathrm{~A}_{1}$	$337 \mathrm{~A}_{2}$	$177 \mathrm{~A}_{1}$	$149 \mathrm{~A}_{1}$	$250 \mathrm{Bu}_{\mathrm{u}}$	$186 \mathrm{~B}_{\mathrm{u}}$
ν_{3}		$445 \mathrm{~B}_{1 \mathrm{lg}}$	$371 \mathrm{~B}_{1 \mathrm{~g}}$	$412 \mathrm{~A}_{1}$	$368 \mathrm{~A}_{1}$	$208 \mathrm{~B}_{2}$	$175 \mathrm{~B}_{2}$	$278 \mathrm{Ag}_{\mathrm{g}}$	200 Ag
ν_{4}		$570 \mathrm{~B}_{3 \mathrm{u}}$	$514 \mathrm{~B}_{3 \mathrm{u}}$	$505 \mathrm{~B}_{1}$	$565 \mathrm{~B}_{1}$	$209 \mathrm{~A}_{1}$	$187 \mathrm{~A}_{1}$	416 Ag	342 Ag
ν_{5}		$731 \mathrm{~B}_{2 \mathrm{u}}$	$691 \mathrm{~B}_{2 \mathrm{u}}$	$757 \mathrm{~B}_{2}$	$731 \mathrm{~B}_{2}$	$1020 \mathrm{~B}_{2}$	$1016 \mathrm{~B}_{2}$	$890 \mathrm{Ag}_{\mathrm{g}}$	887 Ag
ν_{6}		$827 \mathrm{~A}_{1 \mathrm{~g}}$	$815 \mathrm{~A}_{1 \mathrm{~g}}$	$806 \mathrm{~A}_{1}$	$825 \mathrm{~A}_{1}$	$1023 \mathrm{~A}_{1}$	$1018 \mathrm{~A}_{1}$	$943 \mathrm{~B}_{\mathrm{u}}$	$911 \mathrm{~B}_{\mathrm{u}}$
z.p.e.		0.182	0.186	0.192	0.186	0.173	0.158	0.173	0.157

${ }^{a}$ Energies in eV, distances in \AA, angles in deg, and vibrational frequencies in cm^{-1}. ${ }^{b}$ Energy relative to sum of the energies of atoms with spherical charge densities. ${ }^{c}$ Energy relative to sum of the ground state of $\mathrm{N}_{\mathrm{b} 2}$ and N_{2} fragment energies without zero-point corrections. ${ }^{d}$ Symmetry lables refer to an orientation in which the metal atoms are aligned with the x-axis and the N atoms accordingly in the $C_{2 v}$ and $D_{2 h}$ point groups.
bridging conformation (structure 1) is lower in energy than the fragments but high compared to the lowest energy conformer. All parallel bridging conformations of $\mathrm{Mo}_{2} \mathrm{~N}_{2}$ (structure 3) are higher in energy than the separated Mo_{2} and N_{2}. The most stable conformation of $\mathrm{Mo}_{2} \mathrm{~N}_{2}$ is only 0.3 eV bound relative to the separated Mo_{2} and N_{2} fragments. In all conformations the
nitrogen-nitrogen bond is broken; the distance between the nitrogens ranges between 2.6 and $4.1 \AA$. The $\mathrm{Mo}-\mathrm{Mo}$ bond is also elongated by $0.3-0.7 \AA$ compared to the metal dimer.

In contrast to $\mathrm{Mo}_{2} \mathrm{~N}_{2}$, many geometrical conformations and electronic states of $\mathrm{Nb}_{2} \mathrm{~N}_{2}$ are strongly bound (Table 4). The lowest energy ${ }^{5} \mathrm{~B}_{1 \mathrm{~g}}$ state of the planar perpendicular bridging

TABLE 5: Binding Energies, Geometries, and Vibrational Frequencies of the Precursor and Transition State of $\mathbf{N b}_{\mathbf{2}}\left(\mathbf{N}_{\mathbf{2}}\right) \rightarrow \mathbf{N b}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}}{ }^{a}$

	precursor	transition state
energy b	-27.6416	-27.1326
bind. energy c	-0.7298	-0.2208
$R_{1}(\mathrm{Nb}-\mathrm{Nb})$	2.248	2.263
$R_{2}(\mathrm{Nb}-\mathrm{N})$	2.068	2.019
$R_{3}(\mathrm{~N}-\mathrm{N})$	1.458	1.979
d	1.575	1.348
v_{1}	95	i 23
ν_{2}	388	400
ν_{3}	402	435
ν_{4}	438	474
v_{5}	625	669
v_{6}	871	781
z.p.e.	0.175	0.171

${ }^{a}$ Energies in eV , distances in \AA, and vibrational frequencies in cm^{-1}. ${ }^{b}$ Energy relative to sum of the energies of atoms with spherical charge densities. ${ }^{c}$ Binding energy relative to sum of the ground state of $\mathrm{N}_{\mathrm{b} 2}$ and N_{2} fragment energies without zero-point corrections.
conformation with $D_{2 h}$ symmetry (structure $\mathbf{1}$) is bound by 3.0 eV relative to the separated Nb_{2} and N_{2}. In this structure, the $\mathrm{N}-\mathrm{N}$ bond is broken, and the $\mathrm{Nb}-\mathrm{Nb}$ bond is also elongated by $0.7 \AA$ A compared to the metal dimer. The ${ }^{3} \mathrm{~B}_{3 \mathrm{~g}}$ and the ${ }^{1} \mathrm{~A}_{\mathrm{lg}}$ states of the same ($D_{2 h}$) conformation represent transition states between the nonplanar perpendicular bridging configuration in ${ }^{3} \mathrm{~B}_{1}$ and ${ }^{1} \mathrm{~A}_{1}$ electronic states, respectively. The corresponding nonplanar structures are the second and third lowest energy conformations. The ${ }^{3} \mathrm{~B}_{1}$ state is similar in geometry to the lowest energy ${ }^{5} \mathrm{~B}_{1 \mathrm{~g}}$ structure with elongated $\mathrm{Nb}-\mathrm{Nb}$ bond and broken $\mathrm{N}-\mathrm{N}$ bond. On the other hand, the stable singlet bridging structure $\left(C_{2 v}\right)$ has a $\mathrm{Nb}-\mathrm{Nb}$ bond of $2.28 \AA$, only slightly elongated compared to the $2.13 \AA$ bond length in Nb_{2}. This structure, with a $0.65 \AA$ distance between the centers of the $\mathrm{Nb}-\mathrm{Nb}$ and $\mathrm{N}-\mathrm{N}$ bonds, is strongly distorted from the planar position, and it has the longest $\mathrm{Nb}-\mathrm{N}$ bond and the longest $\mathrm{N}-\mathrm{N}$ distance of all perpendicular bridging configurations.

Both $\mathrm{Mo}_{2} \mathrm{~N}_{2}$ and $\mathrm{Nb}_{2} \mathrm{~N}_{2}$ prefer the perpendicular bridging configuration in a quintet state, but the most stable conformation of $\mathrm{Nb}_{2} \mathrm{~N}_{2}$ is planar while that of $\mathrm{Mo}_{2} \mathrm{~N}_{2}$ is nonplanar. The parallel bridging configuration (structure 3) does not give energetically favorable states for either systems. There is a significant difference in the structures of $\mathrm{Nb}_{2} \mathrm{~N}_{2}$ and $\mathrm{Mo}_{2} \mathrm{~N}_{2}$ in the trans $\left(C_{2 h}\right)$ conformation (structures 4.a and 4.b). For the molybdenum system, the bond angle is very close to 90°, while it is over 100° for the niobium system. For $\mathrm{Mo}_{2} \mathrm{~N}_{2}$, the trans conformation is one of the most stable conformations, while it is high energy for $\mathrm{Nb}_{2} \mathrm{~N}_{2}$ compared to the most stable structures.

We recently reported a combined experimental and theoretical study of the precursor-mediated homolysis of N_{2} in a reaction with Nb_{2} on a singlet surface along with a detailed analysis of the orbital interactions. ${ }^{16}$ Here, we only summarize the geometry, energy, and vibrational frequencies for the metastable minimum and the corresponding transition state in Table 5.
The reaction between dimers and N_{2} may yield MN by fragmentation of $\mathrm{M}_{2} \mathrm{~N}_{2}$, which may explain some peculiar features of previous experiments from our laboratory. In these measurements, the reaction products are detected by laser ionization mass spectrometry in which some products may go undetected if their ionization potential is too high. Thus, we calculated the fragmentation energetics of $\mathrm{M}_{2} \mathrm{~N}_{2} \rightarrow 2 \mathrm{MN}$ and the ionization potentials of MN. The calculated results for MoN and NbN and their cations are summarized in Tables 6 and 7, respectively. In accord with the expectation from qualitative

TABLE 6: Binding Energies, Geometries, and Dipole Moments of MoN and MoN ${ }^{+a}$

	$\mathrm{MoN}^{2} \Sigma^{-}$	$\mathrm{MoN}^{4} \Sigma^{-}$	$\mathrm{MoN}^{+1} \Sigma^{+}$	$\mathrm{MoN}^{+3} \Sigma^{-}$
bind. energy b	-4.733	-5.5681	3.025	1.911
energy c	-12.463	-13.298	-4.706	-5.820
R	1.655	1.669	1.625	1.632
μ	2.601	3.228	3.793	3.851

${ }^{a}$ Energies in eV , distances in \AA, and dipole moments in D. ${ }^{b}$ Binding energy relative to sum of the ground state atomic energies. ${ }^{c}$ Energy relative to sum of the energies of atoms with spherical charge densities.

TABLE 7: Binding Energies, Geometries, and Dipole Moments of $\mathbf{N b N}$ and $\mathbf{N b N}{ }^{+a}$

	NbN ${ }^{1} \Sigma^{+}$	NbN ${ }_{3} \Sigma^{-}$	NbN ${ }^{3} \Delta$	NbN^{+} ${ }^{2} \Delta$	NbN^{+} ${ }_{2} \Sigma^{+}$	NbN^{+} $4 \Sigma^{-}$
bind. energy b	-5.194	-6.153	-6.219	0.956	2.695	2.982
energy c	-11.446	-12.405	-12.471	-5.296	-3.557	-3.269
R	1.691	1.6959	1.6977	1.6597	1.6790	1.736
μ	5.96	6.03	3.74	4.72	3.38	3.73

${ }^{a}$ Energies in eV , distances in \AA, and dipole moments in D. ${ }^{b}$ Binding energy relative to sum of the ground-state atomic energies. ${ }^{c}$ Energy relative to sum of the energies of atoms with spherical charge densities.
bonding arguments and previous generalized valence bond (GVB) calculations by Allison and Goddard, ${ }^{17} \mathrm{MoN}$ retains three unpaired electrons on $\delta_{x y}, \delta_{x^{2}-y^{2}}$, and σ orbitals leading to the ${ }^{4} \Sigma^{-}$ground state. Our calculated bond length of $1.669 \AA$ is slightly too long compared to the experimental value ${ }^{18}$ of 1.636 \AA and the calculated value of $1.603 \AA$ obtained by Allison and Goddard. The calculated dipole moment of the ground state $(3.23 \mathrm{D})$ is in accord with the experimental value ${ }^{19}$ of 3.38(7) D and with the GVB calculated moment of 3.12 D. The dissociation energy of the ground state of MoN relative to the ${ }^{7} \mathrm{~S}$ Mo and ${ }^{4} \mathrm{~S} \mathrm{~N}$ atoms is 5.567 eV as opposed to the GVB results of 4.075 eV . We could not find an experimental value for the dissociation energy; therefore, it is difficult to find the reason for this disagreement. The ionization potential for ${ }^{4} \Sigma^{-}$ $\rightarrow{ }^{3} \Sigma^{-}$is 7.7305 eV . Consequently, MoN fragments cannot be detected in our experiments owing to their high ionization potential. It follows from Tables 3 and 6 that the fragmentation energy for the $\mathrm{Mo}_{2} \mathrm{~N}_{2} \rightarrow 2 \mathrm{MoN}$ process is 2.438 eV for the ground state of the lowest energy conformer of $\mathrm{Mo}_{2} \mathrm{~N}_{2}$.

In agreement with experimental and other theoretical results, ${ }^{20}$ we found that the ground state of NbN is ${ }^{3} \Delta$. We also found that the ${ }^{3} \Sigma^{-}$state arising from the δ^{2} configuration is very close in energy to the ground state, which previously has not been described. The experimental study of Azuma et al. concentrated on the states arising from the $\pi \delta$ configurations. ${ }^{21}$ Our calculated equilibrium bond length $(1.698 \AA)$ is somewhat too long compared to the experimental value of $1.663 \AA$, while it is very close to the theoretical value $(1.695 \AA)$ obtained by multireference CI calculations. The calculated dipole moment $(3.740 \mathrm{D})$ is somewhat larger than the experimental value of $3.26(6) \mathrm{D}$ and again close to the calculated value of 3.65 D by high-level ab initio calculations. The ionization potential for the ${ }^{3} \Delta \rightarrow{ }^{2} \Delta$ transition is 7.175 eV . The fragmentation energy of the $\mathrm{Nb}_{2} \mathrm{~N}_{2} \rightarrow 2 \mathrm{NbN}$ process is 4.946 eV for the lowest energy conformer of $\mathrm{Nb}_{2} \mathrm{~N}_{2}$.

Reactions of Metal Trimers with \mathbf{N}_{2}. Before discussing the reaction products, let us first describe the metal trimers. The stable geometries of Nb_{3} and Mo_{3} molecules are listed in Tables 8 and 9 , respectively. These molecules can adopt linear, $D_{3 h}$, acute and obtuse $C_{2 v}$ and C_{s} symmetry structures. The lowest energy conformation of Mo_{3} is an obtuse triangle close to $C_{2 v}$ symmetry with a spin multiplicity of 3 . Although the geometry

TABLE 8: Relative Energies and Geometries of $\mathrm{Mo}_{3}{ }^{a}$

symm.	$D_{3 h}$	$C_{2 v}$ acute	C_{s} obtuse	C_{s} obtuse	$C_{2 v}$ acute	C_{s} obtuse	Cs obtuse
el. state	${ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$	${ }^{1} \mathrm{~A}_{1}$	${ }^{1} \mathrm{~A}^{\prime}$	${ }^{3} \mathrm{~A}^{\prime}$	${ }^{2} \mathrm{~B}_{2}$	${ }^{5} \mathrm{~A}^{\prime}$	${ }^{5} \mathrm{~A}$ "
energy ${ }^{\text {b }}$	-18.049	-18.147	-18.240	-18.726	-18.393	-18.652	-17.717
rel. energy	0.679	0.579	0.485	0.000	0.332	0.074	1.009
R_{1}	2.247	2.314	2.185	2.197	2.263	2.206	2.216
R_{2}		2.314	2.182	2.198	2.263	2.206	2.229
R_{3}		2.143	2.418	2.419	2.221	2.768	2.512

${ }^{a}$ Energies in eV , distances in \AA, and vibrational frequencies in $\mathrm{cm}^{-1} .{ }^{b}$ Energy relative to sum of the energies of atoms with spherical charge densities.

TABLE 9: Relative Energies, Geometries, and Vibrational Frequencies of $\mathbf{N b}_{3}{ }^{a}$

symmetry	$D_{3 h}$	C_{s}	C_{s}
acute	obtuse		
el. state	${ }^{2} \mathrm{E}^{\prime \prime}$		${ }^{2} \mathrm{~A}^{\prime \prime}$

${ }^{a}$ Energies in eV , distances in \AA, and vibrational frequencies in cm^{-1}. ${ }^{b}$ Energy relative to sum of the energies of atoms with spherical charge densities.
is close to $C_{2 v}$, the electronic structure is only C_{s} symmetry. Upon symmetrization of the wave function and geometry optimization, an acute triangle is obtained, which is 0.32 eV above the lowest energy state. The obtuse triangle with ${ }^{5} \mathrm{~A}^{\prime}$ electronic state is only 0.07 eV higher in energy that the lowest conformation.

Goodwin and Salahub studied the small clusters of Nb atoms up to seven atoms based on local density functional theory. ${ }^{22}$ In agreement with their results, we found the acute $C_{2 v}$ structure to have the lowest energy with a ground-state spin multiplicity of 2. Our optimized geometry with sides of 2.382, 2.382, and $2.255 \AA$ is in good agreement with the LDA geometry found by Goodwin and Salahub with sides of 2.37, 2.37, and $2.26 \AA$. However, our geometry differs significantly from the optimized geometry of Goodwin and Salahub (2.32, 2.43, and $2.28 \AA$) obtained with gradient-corrected DFT methods. The $C_{2 v}$ structures were obtained by starting from an obtuse and an acute C_{s} symmetry starting point, both of which have converged to the same $C_{2 v}$ structure. The $D_{3 h}$ doublet state is only 0.14 eV higher than the lowest energy structure. The highest occupied molecular orbital is of degenerate $\mathrm{E}^{\prime \prime}$ symmetry with only single electron occupations, which leads to the Jahn-Teller instability of the $D_{3 h}$ structure.

The structural alternatives for $\mathrm{M}_{3} \mathrm{~N}_{2}$ clusters can be derived from the conformations for $\mathrm{M}_{2} \mathrm{~N}_{2}$ by adding an extra metal atom to various positions. The most important conformations of $\mathrm{M}_{3} \mathrm{~N}_{2}$ are shown in Figure 3. The binding energies, geometries, and vibrational frequencies of the lowest energy conformers and states of $\mathrm{Mo}_{3} \mathrm{~N}_{2}$ and $\mathrm{Nb}_{3} \mathrm{~N}_{2}$ are listed in Tables 10 and 11, respectively. The energetically most favorable structures of $\mathrm{M}_{3} \mathrm{~N}_{2}$ are the trigonal bipyramidal (8), the square pyramidal (9), and the tetrahedron with a bridging N atom (16) structures, which all are related to the most stable perpendicular bridging conformations of the $\mathrm{M}_{2} \mathrm{~N}_{2}$.

The preferred conformation of $\mathrm{Mo}_{3} \mathrm{~N}_{2}$ is a tetrahedron bridged by a nitrogen atom (16) in the ${ }^{3} \mathrm{~A}^{\prime \prime}$ state. This state is bound by 1.5 eV relative to the separated metal trimer and N_{2}. In this conformation, an additional Mo atom caps a face of two metals and one nitrogen of the nonplanar perpendicular bridging conformation of $\mathrm{Mo}_{2} \mathrm{~N}_{2}$. The second lowest conformation is the square pyramidal structure (9) in the ${ }^{3} \mathrm{~A}_{2}$ state with its energy

Figure 3. The structures of $\mathrm{M}_{3} \mathrm{~N}_{2}$ conformers.
0.9 eV below that of the separated Mo_{3} and N_{2} molecules. The ${ }^{5} \mathrm{~B}_{2}$ and ${ }^{1} \mathrm{~A}_{1}$ states of the same conformations are only 0.15 and 0.25 eV above the energy of the ${ }^{3} \mathrm{~A}_{2}$ state. The trigonal bipyramidal structure (8) with $D_{3 h}$ symmetry is energetically equivalent to the separated N_{2} and Mo_{3} fragments.

We previously characterized the gas-phase structure of $\mathrm{Nb}_{3} \mathrm{~N}_{2}$ on the basis of zero electron kinetic energy photoelectron spectroscopy and density functional calculations. ${ }^{23}$ The $\mathrm{Nb}_{3} \mathrm{~N}_{2}$ cluster has a strong preference for the square pyramidal structure and prefers the low-spin electronic state. The ${ }^{2} \mathrm{~B}_{1}$ state is 3.2 eV lower in energy than the separate N_{2} and Nb_{3} fragments. The energy of the trigonal bipyramidal structure is 1.5 eV above than that of the square pyramid. The second lowest energy conformer of $\mathrm{Nb}_{3} \mathrm{~N}_{2}$ (structure 15) has two nitrogen atoms in bridging position and slightly moved out of the plane of the metal trimer. The C_{s} symmetry structure is a transition state as indicated by the imaginary frequency. Following the mode of the imaginary frequency, the energy dropped by only less than 0.01 eV . Such distortions with negligible effect on the energy are very common in $\mathrm{M}_{3} \mathrm{~A}_{2}$ molecules ($\mathrm{M}=$ transition metal, $\mathrm{A}=\mathrm{C}, \mathrm{N}$) and related to the degenerate orbitals of the metal trimer. Owing to the flat potential surface, it is challenging to locate the minimum exactly. This conformation does not play a significant role in the reactivity of Nb_{3} with N_{2} owing to its high energy.

A linear transit calculation of the Nb_{3} reaction with N_{2} in a perpendicular bridging conformation, restricted to $C_{2 v}$ symmetry, showed the existence of a precursor and a transition state analogous to the dimer reaction in similar orientation. The

TABLE 10: Binding Energies, Geometries, and Vibrational Frequencies of $\mathrm{Mo}_{3} \mathbf{N}_{\mathbf{2}}$ Conformers ${ }^{\boldsymbol{a}}$

symm.	$D_{3 h}$	$C_{2 v}$	C_{s}	C_{s}							
	8	9	9	9	10	11	12	13	14	15	16
state	${ }^{5} \mathrm{~A}^{\prime}$	${ }^{3} \mathrm{~A}_{2}$	${ }^{1} \mathrm{~A}_{1}$	${ }^{5} \mathrm{~B}_{2}$	${ }^{3} \mathrm{~A}_{2}$	${ }^{3} \mathrm{~A}_{2}$	${ }^{5} \mathrm{~B}_{2}$	${ }^{3} \mathrm{~A}_{1}$	${ }^{3} \mathrm{~B}_{2}$	${ }^{5} \mathrm{~A}^{\prime}$	${ }^{3} \mathrm{~A}$ "
energy ${ }^{\text {b }}$	-35.157	-36.055	-35.804	-35.904	-36.003	-32.378	-35.648	-35.932	-36.110	-36.030	-36.685
bind. energy ${ }^{c}$	-0.005	-0.903	-0.652	-0.752	-0.851	2.784	0.496	-0.780	-0.958	-0.878	-1.533
$R_{1}(\mathrm{Nb}-\mathrm{Nb})$	2.383	2.314	2.265	2.328	3.581	2.414	2.060	2.386	3.501	2.701	2.536
$R_{2}(\mathrm{Nb}-\mathrm{Nb})$		3.019	3.058	2.954	2.212	2.393	2.588	2.216	2.245	2.389	2.285
$R_{3}(\mathrm{Nb}-\mathrm{N})$	2.064	2.097	2.193	2.115	1.907	1.699	2.120	2.235	2.362	1.953	2.103
$R_{4}(\mathrm{Nb}-\mathrm{N})$			1.970	1.971	2.002				1.731	1.874	2.029
$R_{5}(\mathrm{~N}-\mathrm{N})$	3.077	2.527	2.471	2.683	1.216	3.291	1.130	1.149			2.920
$R_{6}(\mathrm{Nb}-\mathrm{N})$											1.906
ν_{1}		$76 \mathrm{~b}_{1}$	$198 \mathrm{~b}_{1}$	$1129 \mathrm{~b}_{1}$						i146 a^{\prime}	$189 \mathrm{a}^{\prime}$
ν_{2}		$221 \mathrm{a}_{1}$	$267 \mathrm{a}_{1}$	$156 \mathrm{a}_{1}$						$44 \mathrm{a}^{\prime \prime}$	$202 \mathrm{a}^{\prime \prime}$
ν_{3}		$245 \mathrm{a}_{1}$	$294 \mathrm{~b}_{2}$	$275 \mathrm{~b}_{2}$						$154 \mathrm{a}^{\prime \prime}$	$308 \mathrm{a}^{\prime}$
ν_{4}		$314 \mathrm{~b}_{2}$	$369 \mathrm{a}_{1}$	$287 \mathrm{a}_{1}$						$158 \mathrm{a}^{\prime}$	$318 \mathrm{a}^{\prime \prime}$
ν_{5}		$420 \mathrm{a}_{1}$	$417 \mathrm{a}_{1}$	$347 \mathrm{a}_{1}$						$265 \mathrm{a}^{\prime \prime}$	$327 \mathrm{a}^{\prime}$
ν_{6}		$475 \mathrm{a}_{2}$	$446 \mathrm{a}_{2}$	$422 \mathrm{a}_{2}$						$275 \mathrm{a}^{\prime \prime}$	$389 \mathrm{a}^{\prime}$
ν_{7}		$527 \mathrm{~b}_{1}$	$550 \mathrm{~b}_{1}$	$437 \mathrm{~b}_{1}$						$483 \mathrm{a}^{\prime}$	$454 \mathrm{a}^{\prime \prime}$
ν_{8}		$632 \mathrm{~b}_{2}$	$635 \mathrm{~b}_{2}$	$636 \mathrm{~b}_{2}$						$790 \mathrm{a}^{\prime \prime}$	$696 \mathrm{a}^{\prime}$
ν_{9}		$761 \mathrm{a}_{1}$	$735 \mathrm{a}_{1}$	$654 \mathrm{a}_{1}$						$926 \mathrm{a}^{\prime}$	$757 \mathrm{a}^{\prime}$
z.p.e.		0.228	0.243	0.199						0.192	0.226

${ }^{a}$ Energies in eV , distances in \AA, angles in deg, and vibrational frequencies in cm^{-1}. ${ }^{b}$ Energy relative to sum of the energies of atoms with spherical charge densities. ${ }^{c}$ Energy relative to sum of the ground state of Mo_{3} and N_{2} fragment energies without zero-point corrections. ${ }^{d}$ Symmetry lables refer to an orientation in which the metal atoms are aligned with the x-axis and the N atoms accordingly in the $C_{2 v}$ and $D_{2 h}$ point groups.

TABLE 11: Binding Energies, Geometries, and Vibrational Frequencies of $\mathbf{N b}_{3} \mathbf{N}_{\mathbf{2}}$ Conformers ${ }^{\boldsymbol{a}}$

symm.	$D_{3 h}$	$C_{2 v}$	C_{s}	C_{s}				
state	${ }^{2} \mathrm{E}^{\prime}$	${ }^{2} \mathrm{~B}_{1}$	${ }^{2} \mathrm{~A}_{2}$	${ }^{2} \mathrm{~A}_{1}$	${ }^{2} \mathrm{~B}_{2}$	${ }^{2} \mathrm{~A}_{2}$	${ }^{2}$ A ${ }^{\prime}$	${ }^{2} \mathrm{~A}^{\prime}$
	8	9	10	12	13	14	15	17
energy ${ }^{\text {b }}$	-35.980	-37.488	-33.914	-34.191	-34.645	-36.192	-36.548	-35.533
bind. energy ${ }^{c}$	-1.717	-3.225						
$R_{1}(\mathrm{Nb}-\mathrm{Nb})$	2.395	2.356	3.066	2.288	2.747	3.293	3.010	2.330
$R_{2}(\mathrm{Nb}-\mathrm{Nb})$		2.855	2.312	2.329	2.265	2.368	2.418	2.425
$R_{3}(\mathrm{Nb}-\mathrm{N})$	2.130	2.371	1.972	2.243	2.079	2.250	2.123	2.101
$R_{4}(\mathrm{Nb}-\mathrm{N})$		1.970				1.780	1.813	2.262
$R_{5}(\mathrm{~N}-\mathrm{N})$	3.241	2.712	1.275	1.124	1.194			1.320
$R_{6}(\mathrm{Nb}-\mathrm{N})$								2.165
ν_{1}		188 b1					i242 $\mathrm{a}^{\prime \prime}$	
ν_{2}		$257 \mathrm{a}_{1}$					$98 \mathrm{a}^{\prime \prime}$	
ν_{3}		$309 \mathrm{~b}_{2}$					$161 \mathrm{a}^{\prime \prime}$	
ν_{4}		$310 \mathrm{a}_{1}$					$194 \mathrm{a}^{\prime}$	
v_{5}		$390 \mathrm{a}_{1}$					$327 \mathrm{a}^{\prime \prime}$	
ν_{6}		$449 \mathrm{a}_{2}$					$351 \mathrm{a}^{\prime \prime}$	
ν_{7}		$609 \mathrm{~b}_{1}$					$440 \mathrm{a}^{\prime}$	
ν_{8}		$667 \mathrm{~b}_{2}$					$839 \mathrm{a}^{\prime \prime}$	
ν_{9}		$743 \mathrm{a}_{1}$					$840 \mathrm{a}^{\prime}$	
z.p.e.		0.243					0.202	

${ }^{a}$ Energies in eV , distances in \AA, angles in deg, and vibrational frequencies in cm^{-1}. ${ }^{b}$ Energy relative to sum of the energies of atoms with spherical charge densities. ${ }^{c}$ Energy relative to sum of the ground state of Nb_{3} and N_{2} fragment energies without zero-point corrections. ${ }^{d}$ Symmetry lables refer to an orientation in which the metal atoms are aligned with the x-axis and the N atoms accordingly in the $C_{2 v}$ and $D_{2 h}$ point groups.
corresponding structures are listed in Table 12. Additional imaginary vibrational frequencies are related to the $C_{2 v}$ symmetry restriction and correspond to metal trimer distortions. The 0.18 eV barrier, which separates the precursor from the product on the $C_{2 v}$ reaction path, may diminish if the symmetry restriction is removed. Since optimization on this extremely flat potential surface proved to be difficult, we did not locate these stationary points exactly. On the basis of these data, the reaction path of the dimer and the trimer follows qualitatively similar potential energy surfaces characterized by a precursor and a transition state. The barrier separating the precursor and the stable structure for the trimer reaction is significantly smaller compared to that of the dimer.

Our experimental reactivity study indicates that metal clusters with three or more atoms may react with more than one nitrogen molecule; in fact, metal trimers may take up to three nitrogen molecules. Therefore, we studied the structures and binding energies of the $\mathrm{M}_{3} \mathrm{~N}_{6}$ clusters. We started the optimization with the three nitrogen molecules perpendicular bridging the three
edges of the metal trimer but arrived at structures of $\mathrm{Mo}_{3} \mathrm{~N}_{6}$ and $\mathrm{Nb}_{3} \mathrm{~N}_{6}$ shown in Figure 4 after a significant reorganization. The binding energies and most important geometrical parameters of $\mathrm{Mo}_{3} \mathrm{~N}_{6}$ and $\mathrm{Nb}_{3} \mathrm{~N}_{6}$ are listed in Table 13. Both $\mathrm{Mo}_{3} \mathrm{~N}_{6}$ and $\mathrm{Nb}_{3} \mathrm{~N}_{6}$ can be described as a trigonal bipyramid core of $\mathrm{Nb}_{3} \mathrm{~N}_{2}$ capped by nitrogen atoms on four faces. This arrangement allows stronger nitrogen-nitrogen interactions. The capping nitrogen atoms are only $1.4 \AA$ away from the axial nitrogens, while the distance between capping nitrogens and metal is between 2.0 and $2.1 \AA$. Although $\mathrm{Mo}_{3} \mathrm{~N}_{6}$ and $\mathrm{Nb}_{3} \mathrm{~N}_{6}$ are structurally similar, they are energetically different. $\mathrm{Nb}_{3} \mathrm{~N}_{6}$ is bound by 1.5 eV relative to the ground states of Nb_{3} and three N_{2} fragments. On the other hand, $\mathrm{Mo}_{3} \mathrm{~N}_{6}$ is slightly higher in energy than the metal trimer and nitrogen fragments. This energetic difference is in accord with the observation that $\mathrm{Nb}_{3} \mathrm{~N}_{6}$ is formed in the experiment, but $\mathrm{Mo}_{3} \mathrm{~N}_{6}$ was not observed.

Metal Tetramer Reactions with \mathbf{N}_{2}. In agreement with a previous study by Goodwin and Salahub, we found that the niobium tetramer adopts an ideal tetrahedron geometrical

TABLE 12: Binding Energies, Geometries, and Vibrational Frequencies of the Precursor and Transition State of $\mathbf{N b}_{3}\left(\mathbf{N}_{2}\right) \rightarrow \mathbf{N b}_{3} \mathbf{N}_{2}$ Restricted to $C_{2 v}{ }^{a}$

	precursor	TS
state $^{\text {energy }}{ }^{b}$		
bind. energy c	-34.5579	-34.3820
$R_{1}(\mathrm{Nb}-\mathrm{Nb})$	-0.2951	-0.1192
$R_{2}(\mathrm{Nb}-\mathrm{Nb})$	2.816	2.787
$R_{3}(\mathrm{Nb}-\mathrm{N})$	2.408	2.417
$R_{4}(\mathrm{Nb}-\mathrm{N})$	2.005	1.917
$R_{5}(\mathrm{~N}-\mathrm{N})$	3.236	3.161
ν_{1}	1.596	1.917
ν_{2}	$\mathrm{il35}$	i 436
ν_{3}	283	i 412
ν_{4}	294	i 405
ν_{5}	332	$\mathrm{il42}$
ν_{6}	381	280
ν_{7}	399	335
ν_{8}	547	397
ν_{9}	772	586
z.p.e.	807	727

${ }^{a}$ Energies in eV , distances in \AA, and vibrational frequencies in cm^{-1}. ${ }^{b}$ Energy relative to sum of the energies of atoms with spherical charge densities. ${ }^{c}$ Binding energy relative to sum of the ground state of Nb_{2} and N_{2} fragment energies without zero-point corrections.

Figure 4. The structure of $\mathrm{M}_{3} \mathrm{~N}_{6}$.
TABLE 13: Binding Energies and Geometries of $\mathrm{Nb}_{3} \mathbf{N}_{6}$ and $\mathrm{Nb}_{3} \mathbf{N}_{6}{ }^{a}$

symm.	$C_{2 v}$	$C_{2 v}$
state	${ }^{3} \mathrm{~A}_{2}$	${ }^{2} \mathrm{~B}_{2}$
energy b	-67.6698	-68.619
bind. energy c	0.335	-1.462
$R_{1}(\mathrm{Nb}-\mathrm{Nb})$	2.765	2.416
$R_{2}(\mathrm{Nb}-\mathrm{Nb})$	2.273	2.737
$R_{3}(\mathrm{Nb}-\mathrm{N})$	2.417	2.443
$R_{4}(\mathrm{Nb}-\mathrm{N})$	2.071	2.093
$R_{5}(\mathrm{~N}-\mathrm{N})$	1.401	1.423
$R_{6}(\mathrm{Nb}-\mathrm{N})$	2.019	2.039
$R_{7}(\mathrm{Nb}-\mathrm{N})$	2.618	2.590

${ }^{a}$ Energies in eV, distances in \AA, and angles in deg. ${ }^{b}$ Energy relative to sum of the energies of atoms with spherical charge densities. ${ }^{c}$ Energy relative to sum of the ground state of Nb_{3} and $3 \mathrm{~N}_{2}$ fragment energies without zero-point corrections.
configuration with sides of $2.480 \AA$ in a singlet state. The tetramer of molybdenum prefers a $D_{2 d}$ structure with $2.239 \AA$ bond length and $3.025 \AA$ diagonal distance in a singlet state. The lowest quintet state of the ideal tetrahedron is 1.3 eV above the $D_{2 d}$ structure. The lowest energy conformation for both $\mathrm{Mo}_{4} \mathrm{~N}_{2}$ and $\mathrm{Nb}_{4} \mathrm{~N}_{2}$ can be derived from the tetrahedral metal core. In $\mathrm{Mo}_{4} \mathrm{~N}_{2}$ one nitrogen caps one face and another nitrogen lies on an edge adjacent to the capped face, while both nitrogens of $\mathrm{Nb}_{4} \mathrm{~N}_{2}$ cap one face each (Figure 5). The ground state of $\mathrm{Mo}_{4} \mathrm{~N}_{2}$ is triplet, while that of $\mathrm{Nb}_{4} \mathrm{~N}_{2}$ is singlet. The ground states of $\mathrm{Mo}_{4} \mathrm{~N}_{2}$ and $\mathrm{Nb}_{4} \mathrm{~N}_{2}$ are 1.41 and 2.54 eV bound compared to the metal tetramers and dinitrogen. In $\mathrm{Mo}_{4} \mathrm{~N}_{2}$ only one of the N atoms binds to three Mo with bond lengths between 1.92 and $2.2 \AA$, and the other N atom binds only to two Mo atoms (1.86 and $1.99 \AA$). The conformation of $\mathrm{Nb}_{4} \mathrm{~N}_{2}$ is more symmetrical where both nitrogen atoms bind to three niobium

Figure 5. The most stable conformations of $\mathrm{Mo}_{4} \mathrm{~N}_{2}$ and $\mathrm{Nb}_{4} \mathrm{~N}_{2}$.
atoms. The geometry of the ground-state configuration of $\mathrm{Nb}_{4} \mathrm{~N}_{2}$ is close to the C_{s} symmetry, with all NbN bonds close to $2.06 \AA$ and two niobium and two nitrogen atoms in the symmetry plane.

Besides these structures, we considered the tetragonal pyramidal structure and its distorted variations, which were all higher in energy. Instead of describing each conformation by bond lengths, it is more appropriate for the $\mathrm{M}_{4} \mathrm{~N}_{2}$ clusters to provide the Cartesian coordinate from which all internal coordinates can be derived. Such data is supplied in the Supporting Information. The Supporting Information includes some optimized geometries, vibrational frequencies, and relative energies of conformations of $\mathrm{M}_{4} \mathrm{~N}_{2}$ clusters that have less significance and are not discussed in the text.

Conclusions

Density functional theory calculations of the energetics of molybdenum and niobium cluster reactions with nitrogen are consistent with the experimentally observed trends that niobium is more reactive than molybdenum. We found that the reduced repulsion between the filled σ orbital of N_{2} and the $d z^{2}$ of Nb due to the lower d population of niobium is the only consistent difference between the orbital interactions of MoN_{2} and NbN_{2}. This interaction term is responsible for stronger binding in the linear conformation of NbN_{2} but has less significance in the side-on coordination. The calculations showed a large variety of possible geometrical conformations and electronic states for these clusters. The perpendicular bridging configuration preferred by $\mathrm{M}_{2} \mathrm{~N}_{2}$ clusters is a structural motif of the most stable conformers of larger $\mathrm{M}_{x} \mathrm{~N}_{2}$ clusters. In contrast to ligandsupported clusters, the linear MNNM conformation is energetically unfavorable for naked clusters. These calculations confirmed that MoN and NbN have high ionization potentials, which makes them undetectable in laser ionization mass spectrometry. The trimers of niobium follow a precursormediated reaction with N_{2} similarly to the dimers; however, the barrier from the precursor to the transition state is smaller than that of the dimer. Trimers and larger clusters may react with more than 1 equiv of N_{2}, and niobium clusters are more likely to take up more nitrogen that molybdenum clusters.

Acknowledgment. This paper is issued as NRCC \#40882.
Supporting Information Available: Optimized geometries, vibrational frequencies, and relative energies of conformations of $\mathrm{M}_{4} \mathrm{~N}_{2}$ clusters (4 pages). Ordering and access information is given on any current masthead page.

References and Notes

(1) (a) Rees, D. C.; Chan, M. K.; Kim, J. Adv. Inorg. Chem. 1994, 40, 89. (b) Rees, D. C.; Kim, J.; Georgiadis, M. M.; Komiya, H.; Chirino, A. J.; Woo, D.; Schlessman, J.; Chan, M. K.; Joshua-Tor, L; Santillan, G.;

Chakrabarti, P.; Hsu, B. T. ACS Symp. Ser. 1993, 535, 170. (c) Kim, J.; Rees, D. C. Biochemistry 1994, 33, 389.
(2) (a) Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. C. Science 1997, 275, 1445.
(3) (a) Mitchell, S. A.; Lian, L.; Rayner, D. M.; Hackett P. A. J. Chem. Phys. 1995, 103, 5539. (b) Mitchell, S. A.; Lian, L.; Rayner, D. M.; Hackett, P. A. Unpublished.
(4) (a) Baerends, E. J.; Ellis, D. E.; Ros, P. Chem. Phys. 1973, $2,41$. (b) Ravenek, W. In Algorithms and Applications on Vector and Parallel Computers; te Riele, H. J. J., Dekker, Th. J.; van de Vorst, H. A. Eds.; Elsevier: Amsterdam, 1987.
(5) (a) Boerrigter, P. M.; te Velde, G.; Baerends, E. J. Int. J. Quantum Chem. 1988, 33, 87. (b) te Velde, G.; Baerends, E. J. J. Comput. Phys. 1992, 99, 84.
(6) (a) Snijders, G. J.; Baerends, E. J.; Vernooijs P. At. Nucl. Data Tables 1982, 26, 483. (b) Vernooijs, P.; Snijders, G. J.; Baerends, E. J. Slater Type Basis Functions for the Whole Periodic System; Internal report; Free University of Amsterdam: The Netherlands, 1981.
(7) Krijn, J.; Baerends, E. J. Fit functions in the HFS-method; Internal report (in Dutch); Free University of Amsterdam: The Netherlands, 1984.
(8) (a) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. (b) Becke, A. D. Phys. Rev., 1988, A38, 2398. (c) Perdew, J. P. Phys. Rev. 1986, B33, 8822; B34, 7046.
(9) (a) Mitchell, S. A.; Lian, L.; Rayner, D. M.; Hackett, P. A. J. Chem. Phys. 1995, 103, 5539. (b) Mitchell, S. A.; Rayner, D. M.; Bartlett, T.; Hackett, P. A. J. Chem. Phys. 1996, 104, 4012.
(10) McClean, R. E.; Campbell, M. L.; Kolsch, E. J. J. Phys. Chem. A 1997, 101, 3348.
(11) Martinez, A.; Köster, A. M.; Salahub, D. R. J. Phys. Chem. A 1997, 101, 1532.
(12) (a) Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1. (b) Ziegler, T. General Energy Decomposition Scheme for the Study of Metal-Ligand Interactions in Complexes, Clusters and Solids, NATO ASI, in press. (c) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, 1558. (d) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, 1755.
(13) (a) Pearson, R. G. Inorg. Chem. 1988, 27, 734. (b) Parr, R. E.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.
(14) Cohen, J. D.; Mylvaganam, M.; Fryzuk, M. D.; Loehr, T. M. J. Am. Chem. Soc. 1994, 116, 9529.
(15) Blomberg, M. R. A.; Siegbahn, P. E. J. Am. Chem. Soc. 1993, 115, 6908.
(16) Bérces, A.; Hackett, P. A.; Lian, L.; Mitchell, S. A.; Rayner, D. M. J. Chem. Phys., in press.
(17) Allison, J. N.; Goddard, W. A., III. Chem. Phys. Lett. 1983, 81, 263.
(18) Calculated from rotational constant B^{\prime} of: Jung, K. Y.; Fletcher, D. A.; Steimle, T. C. J. Mol. Spectrosc. 1994, 165, 448.
(19) Fletcher, D. A.; Jung, K. Y.; Steimle, T. C. J. Chem. Phys. 1993, 99, 901.
(20) Fletcher, D. A.; Steimle, T. C.; Balasubramanian, K. J. Chem. Phys. 1993, 99, 9324.
(21) Azuma, Y.; Huang, G.; Lyne, M. P. J.; Merer, A. J.; Srdanov, V. I. J. Chem. Phys. 1994, 100, 4238.
(22) Goodwin, L.; Salahub, D. R. Phys. Rev. A 1993, 47, R774.
(23) Yang, D.-S.; Zgierski, M. Z.; Bérces, A.; Hackett, P. A.; Martinez, A.; Salahub, D. R. Chem. Phys. Lett. 1997, 227, 71-78.

